Морозов Александр Гавриилович (moralg) wrote,
Морозов Александр Гавриилович
moralg

Categories:

Законы "оптики" гравитационных линз и простые примеры их работы.

      Знакомые всем обычные оптические линзы сильнее всего искривляют луч света, проходящий через их края. А луч света, проходящий через центр линзы не искривляют. Гравитационные линзы тоже искривляют луч света. Но совсем не так, как оптические линзы. Ибо наибольшее искривление луча достигается при его прохождении как можно ближе к тяготеющему объекту. Так, луч света отдаленной звезды, проходящий у самого краешка Солнца, выполняющего функцию гравитационной линзы, искривляется сильнее всего. А луч света от той же звезды, проходящий вдали от края Солнца, практически не искривляется.
      Итак, гравитационные линзы - вовсе не прямой аналог оптических линз. Тогда возникает вопрос - каковы же законы "оптики" гравитационных линз? Они реально просты. И являются вовсе не достижением только общей теории относительности (ОТО) Эйнштейна. А суммой равных вкладов Ньютоновской и Эйнштейновской теорий.
      Итак...

      Как известно, что из черной дыры (ЧД) даже фотоны улететь не могут. Поскольку для улета из ЧД нужна вторая космическая скорость v2, превышающая скорость света. На поверхности ЧД, характеризуемой ее гравитационным радиусом (радиусом горизонта событий) Rчд = 2GM/с2 вторая космическая скорость v2 = (2GM/Rчд) как раз равна скорости света. Но задачу об изгибе луча света непосредственно в окрестности ЧД мы здесь рассматривать не будем.

      1. Ньютонов вариант законов "оптики" гравитационных линз.
      Ограничимся задачей об изгибе луча света при его прохождении вблизи границы не слишком массивного и не слишком компактного объекта. Типа обычных звезд и планет. Для которых вторая космическая скорость на их поверхности многократно меньше скорости света.
      Похожую задачу мы обсуждали в эскизе "Чем Земля ловит астероиды и метеориты?". Только в приведенных в нем формулах скорость налетающего на Землю астероида vo в случае задачи об искривлении луча света надо заменить на скорость света (фотона) с. И мы будем иметь ввиду, что v2 << c. Этот фактор будет означать малость угла отклонения θ луча света вблизи поверхности звезды или планеты. Используя малость этой величины из формул упомянутого эскиза легко получить:
                                              θн ≈ (v2 / c)2            (1).
      Этот результат был получен в начале 19 века через довольно непростые вычисления и является правильным в рамках Ньютоновской теории гравитационного поля. Но никто проверять его тогда не стал.
      И, поскольку, v2 = (2GM/R), то угол отклонения луча света θн прямо пропорционален массе отклоняющего луч объекта (массе гравитационной линзы) и обратно пропорционален кратчайшему расстоянию луча света от центра объекта (линзы).

      2. Эйнштейнов вариант законов "оптики" гравитационных линз.
      Гораздо более удивительным является результат аналогичных вычислений в ОТО Эйнштейна - угол отклонения луча света по теории Эйнштейна оказался ровно вдвое больше Ньютоновского.
                                              θэ ≈ 2×(v2 / c)2          (2).

      3. Оценки свойств гравитационных линз Солнца и Земли.
      Сделаем теперь численную оценку угла θэ для Солнца. На его поверхности v2 618 км/сек. Подставляя это значение в (2) получим θэ ≈ 1,751" (1,751 угловых секунды, по Ньютону θн = 0,876"). Результат измерения этого угла при затмении Солнца в 1919 году дал θэ ≈ 1,75"±0,15" . Хорошее совпадение теории с результатом наблюдений!
      Ради любопытства оценим потенциал нашей родной Земли в качестве гравитационной линзы. Сначала хотя бы без учета ее атмосферы. У Земли v2 11,2 км/сек. Подставляя эту величину в (2) получаем θэ ≈ 0,00057". Чрезвычайно мало, однако. Земная атмосфера существенно сильнее изгибает луч света - примерно на 35' (35 угловых минут) на уровне моря. То есть, более чем 3,5 миллиона раз сильнее. Но за пределами земной атмосферы наш результат в θэ ≈ 0,00057" будет практически правильным (с учетом изменения v2 с высотой, когда в формулу вместо радиуса Земли Rз надо подставить сумму и высоты над поверхностью Земли).

      4. Почти идеальная гравитационная линза.
      Гравитационных линз в космосе столько же, сколько же, сколько и гравитирующих объектов. Но подавляющее их большинство чрезвычайно слабы. А среди сильных много корявых, существенно искажающих изображение наблюдаемого объекта. Поэтому в рамках этого эскиза приведу лишь пример почти идеальной гравитационной линзы, являющейся гигантской эллиптической (почти сферической) галактикой, заслоняющей по лучу нашего зрения гораздо более удаленную карликовую галактику и изображающую ее в виде почти идеального голубоватого кольца:




Tags: Эскизы космоса
Subscribe

Recent Posts from This Journal

  • Сомбреро в ИК и оптике...

    Недалеко от нас есть весьма красивая галактика "Сомбреро". Лучший ее снимок в оптической (видимой нашими глазами) части спектра сделал…

  • Какой подвид Хомо властвует над нами, сапиенсами?

    Люди, достигающие высот власти, обладают качествами, заметно отличающими их от большинства остальных. Внешне почти незаметных, но обусловленных…

  • Не Иванов, Петров, Сидоров...

    В начале века проведено было масштабное исследование частотности русских фамилий. Иванов лишь второй в списке, Петров - десятый, Сидоров - 66-й, а…

promo moralg march 5, 2018 03:01 46
Buy for 30 tokens
Многие из нас вздрагивают, когда дорогу нам перебегает черная кошка. Но неприятных последствий обычно не возникает и мы быстро забываем о ней. Но два дня назад на северо-восток США обрушилась очередная буря и совершила совсем не очередное действо - сломала дерево, которое 227 лет назад посадил…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 4 comments